20th Century power

This forum has been developed to discuss maintenance topics in Canada.

Moderators: ahramin, sky's the limit, sepia, Sulako, North Shore

Post Reply
Message
Author
BE20 Driver
Rank 7
Rank 7
Posts: 535
Joined: Mon May 17, 2010 12:58 pm

20th Century power

#1 Post by BE20 Driver » Sat Sep 08, 2018 12:27 am

A few nights ago, I was doing a death flip with a captain who had just bought a kit plane for his son to learn on. We got talking about all of the advances in design since we had both learned to fly. It's amazing the changes in avionics etc that have come about over the last decade.

We both agreed that there hadn't been the same level of change in engine technology over the same period of time. Most aircraft, certified or not still use Lycoming engines. Rotax has certainly come to be a bigger player in the home built category but still only represents a small portion of the market.

It's been a long time since I have flown anything with pistons but we got to thinking that automotive engines have evolved a great deal in the last 30 years. I know of 3 people that have had engine failures with Lycoming aircraft engines but I don't know of anyone who has suffered an engine failure in a car. Today's engines are far more powerful and reliable than they were 20 years ago and yet most pilots would never consider anything other than a 60 year old aircraft engine.

For comparison, Take an O-360 engine. It puts out about 150 hp using 5.9 L of displacement. I have a 20 year old Subaru in my garage that puts out 280 hp on only 2 L of displacement. Both weigh about the same and have nearly identical length/width/height dimensions. My Subie was rated by Consumer Reports to be the one car most likely to last 450,000km without any major issues. Most people point to the single ignition source of an automotive engine as the biggest draw back. I read somewhere that the Bosch ignition on my Boxer engine was designed with a 20,000 hour Mean Time Between Failure while a typical aircraft magneto was designed with a 600 hour MTBF. That means that on the typical aircraft engine you can count on having at least one to three ignition failures through it's service life. My car, not so much.

Here's where I make a few assumptions. I know Torque isn't linear but for the sake of argument, let's assume it is. If my engine develops peak torque (280 lb-ft) at 4800 RPM it should make 140 at 2400 RPM. That puts it in the same range as a typical lycoming powering a C-172/PA28 which I think develops peak torque around 3000 RPM if I remember anything about pistons. My engine is happy as a clam running at 2400 RPM and could do that all day long.

So, if an aircraft like a 172 takes off with 100% power (give or take 150 hp) then cruises at 75% (112 HP), why couldn't I use a automotive engine with 280 HP to take off with 50% power and then throttle back to 40% for cruise and all the while do this with 2.0L displacement instead of 5.9L? I am pretty convinced that my automotive engine will outlast all the Lycoming's currently installed. What does a Lycoming cost these days? It's north of $20,000. Subaru equivalent? $4000 including Turbos, intercoolers alternators and air conditioning.

What's wrong with my thinking here?
---------- ADS -----------
  

digits_
Rank (9)
Rank (9)
Posts: 1440
Joined: Mon Feb 14, 2011 2:26 am

Re: 20th Century power

#2 Post by digits_ » Sat Sep 08, 2018 10:30 am

I've had one car engine failure (turned out to be an electrical fluke) on the highway, and 2 very unhealty sounding engines (one blown spark plug, the other dumped all the oil) on other cars. So 3 engine events on 10 year old car engines, and -luckily- zero airplane engine events.

Some other thoughts:
- density altitude: how would a normal car engine behave at 10 000 ft?
- size: I have the impression the average car with all accessories takes up a bunch more space than an airplane engine. The more efficient the engine, the more accessories it usually has.
---------- ADS -----------
  

goingnowherefast
Rank (9)
Rank (9)
Posts: 1025
Joined: Wed Mar 13, 2013 9:24 am

Re: 20th Century power

#3 Post by goingnowherefast » Sat Sep 08, 2018 12:46 pm

I've had two automotive engine failures. One was a connecting rod and a catastrophic failure. Was quite dramatic. Second one was ignition related.

Also had a slew of ignition problems and rough running, won't idle, etc. Stuff that would be unacceptable in an aircraft.

I've also had two mag failures. Both were uneventful and I didn't even notice until I did the mag check before shut down.

All the attempts that I'm aware of at bringing automotive engine technology to certified aircraft have had two independent engine computers. Most have also been diesel, meaning no spark plugs.
---------- ADS -----------
  

User avatar
Arnie Pye
Rank 0
Rank 0
Posts: 8
Joined: Sun Aug 12, 2018 3:54 pm

Re: 20th Century power

#4 Post by Arnie Pye » Sat Sep 08, 2018 6:23 pm

In the home built space, Viking Aircraft Engines are using a Honda Fit and turbocharged Honda Civic based engine. I believe they are 130 and 180 HP and depending on the application are getting around 4 GPH fuel flow. To me, the turbocharged engines are probably better for aviation since they'll maintain power higher up.

Subaru has a diesel boxer in their Foresters that they sell in Europe. There are a few guys putting them into RV's from the looks of it. 285 lb.ft torque and according to the blog I read 2.5 GPH at cruise. The Vans guys are saying it's pretty much the same size as an IO-360 for size and weight. I've only skimmed the forums so the only thing I noted was that the earlier EE20's had crank shaft problems which were resolved in later versions. Here's a video I found https://www.youtube.com/watch?v=9Wdw_S-WT-g

Speaking of alternate engine solutions, there was a guy who built a Bugati aero racer replica and powered it with two Suzuki Hayabusa engineshttps://www.engineswapdepot.com/?p=7262. Now there's a creative idea. 200 HP out of a 200 lb engine designed to rev super high. People have boosted the Hayabusa engines up to 700 HP which is a crazy amount of horse power - 100 HP more than a Harvard with a 22 L displacement. Imagine that engine swap - a Harvard with a tiny Hayabusa engine up front.
---------- ADS -----------
  

User avatar
telex
Rank 4
Rank 4
Posts: 214
Joined: Sun Feb 07, 2016 9:05 pm

Re: 20th Century power

#5 Post by telex » Sat Sep 08, 2018 7:56 pm

A bit of an extreme example but the ill fated Pond Racer tried automotive engines.

Endless money and brilliant engineering wasn't enough to make it work.
---------- ADS -----------
  

User avatar
5x5
Rank (9)
Rank (9)
Posts: 1390
Joined: Sun Feb 15, 2004 7:30 pm

Re: 20th Century power

#6 Post by 5x5 » Sun Sep 09, 2018 8:12 am

Here's Mike Busch's recent article with his musings on this topic.

https://www.savvyaviation.com/wp-conten ... r-talk.pdf

Not sure if you're familiar with him, but Mike has created quite a name for himself in the US as an aircraft maintenance authority but like all such "authorities" has his adherents and his naysayers. I think he presents his thoughts fairly clearly however and is worth reading most of the time.
---------- ADS -----------
  
Being stupid around airplanes is a capital offence and nature is a hanging judge!

“It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.”
Mark Twain

nbinont
Rank 3
Rank 3
Posts: 110
Joined: Wed Apr 25, 2012 6:54 pm

Re: 20th Century power

#7 Post by nbinont » Sun Sep 09, 2018 2:19 pm

I've had a car engine failure - timing chain went and instantly lost all power.
I've also observed another catastrophic failure: was driving behind a SUV when something came loose and exited out the bottom of the engine dumping the entirely of the oil and coolant on the road in only a few meters.
If this had been a single engine aircraft, it would have been a forced landing. Thankfully they were cars and simply pulling to the side of the road was the simple next step.
---------- ADS -----------
  

Heliian
Rank (9)
Rank (9)
Posts: 1233
Joined: Wed Apr 29, 2009 2:14 pm

Re: 20th Century power

#8 Post by Heliian » Mon Sep 10, 2018 8:35 am

Money.


On the other hand, it may be worth it to wait for more efficient hybrid designs.
---------- ADS -----------
  

User avatar
PilotDAR
Rank 10
Rank 10
Posts: 2628
Joined: Sun Sep 30, 2012 6:46 pm
Location: Near CNJ4 Orillia, Ontario

Re: 20th Century power

#9 Post by PilotDAR » Mon Sep 10, 2018 11:06 am

Type certified aircraft are required to have type certified engines. Type certifying an engine, in addition to immense development costs, requires about a quarter million dollar fee to Transport Canada. A type certified piston aircraft engine is required to operate without an external electrical power supply (so magnetos). This was quiet a discussion point while certifying the Thielert engines, I'm not quite sure how it was resolved. I do know though that a DA-42 ended up in a field following a complete electrical failure. 'No point having two engines if they both quit together 'cause the electricity stopped!

I did work for a while on a program to type certify a Subaru derivative engine (as it is a derivative of an aircraft engine anyway). The program lost financial inertia. Our industry effort will be better directed to creating a certification basis for electric motors for planes, that's where a lot of future will be!
---------- ADS -----------
  

lownslow
Rank 8
Rank 8
Posts: 935
Joined: Fri Mar 07, 2008 8:56 am

Re: 20th Century power

#10 Post by lownslow » Mon Sep 10, 2018 11:17 am

Arnie Pye wrote:
Sat Sep 08, 2018 6:23 pm
Speaking of alternate engine solutions, there was a guy who built a Bugati aero racer replica and powered it with two Suzuki Hayabusa engines
Don’t forget that he died in the crash of that Bugatti replica after... you guessed it... powerplant failure.
---------- ADS -----------
  

photofly
Top Poster
Top Poster
Posts: 6579
Joined: Tue Jan 18, 2011 4:47 pm
Location: Making aviation exhausting, everywhere

Re: 20th Century power

#11 Post by photofly » Mon Sep 10, 2018 11:35 am

There's another problem with new aircraft engine designs. They typically come with an absurdly low TBO initially, until there's a body of evidence for the regulator to approve extending them. So they're not a very attractive proposition. Catch 22 really, because until there are a lot of engines out there it's hard to gather evidence to approve longer run times.
---------- ADS -----------
  
“This isn’t flying, it’s falling. With style.”

Ame213
Rank 0
Rank 0
Posts: 1
Joined: Mon Sep 10, 2018 4:01 pm

Re: 20th Century power

#12 Post by Ame213 » Mon Sep 10, 2018 4:24 pm

One thing to consider is that an aircraft engine is designed to make its max horsepower until overhaul reliably, you car is on average running at what? 1/3 to 1/2 hp? Try running any car let alone a high compression turbo engine at full throttle for 2000 hours and see how long it lasts then. A horizontally opposed air cooled engine is the by far the best option for an aircraft piston engine, there is a reason they haven't changed much in the last 60+ years and I'm sure it wasn't for a lack of trying.
---------- ADS -----------
  

Aviatard
Rank 5
Rank 5
Posts: 333
Joined: Fri Aug 05, 2005 2:45 am
Location: In a box behind Walmart

Re: 20th Century power

#13 Post by Aviatard » Mon Sep 10, 2018 5:23 pm

photofly wrote:
Mon Sep 10, 2018 11:35 am
They typically come with an absurdly low TBO initially, until there's a body of evidence for the regulator to approve extending them.
Hmm. TBO is a manufacturer recommendation and not a hard limitation, no? We run our engines on condition, but this might be because our MCM allows it. I’m not sure if this is allowed for non-commercial ops.
---------- ADS -----------
  

digits_
Rank (9)
Rank (9)
Posts: 1440
Joined: Mon Feb 14, 2011 2:26 am

Re: 20th Century power

#14 Post by digits_ » Mon Sep 10, 2018 5:51 pm

Aviatard wrote:
Mon Sep 10, 2018 5:23 pm
photofly wrote:
Mon Sep 10, 2018 11:35 am
They typically come with an absurdly low TBO initially, until there's a body of evidence for the regulator to approve extending them.
Hmm. TBO is a manufacturer recommendation and not a hard limitation, no? We run our engines on condition, but this might be because our MCM allows it. I’m not sure if this is allowed for non-commercial ops.
Still, do you want to pay 50k (? more ?) for a new engine with 500 hour TBO (random numbers) or 40k for one with 2000 TBO that can probably run to 3000 anyway?
---------- ADS -----------
  

BE20 Driver
Rank 7
Rank 7
Posts: 535
Joined: Mon May 17, 2010 12:58 pm

Re: 20th Century power

#15 Post by BE20 Driver » Mon Sep 10, 2018 7:53 pm

I think my point wasn't that an engine failure can't happen. I know people that have had failures in a Turboprop and Turbojet engine as well (I don't know if I hang out with a bunch of unlucky pilots or what). Piston engine failures can happen no matter the engine.

I realize that in a certified aircraft, to remain in that category, you have to have a certified engine. I guess I was thinking more along the lines of the home built/OM market where companies like Rotax got started. I remember when I was training Rotax's were rumoured to be garbage engines. Now I'd argue that they seem to be on par with any Lycoming out there. Better even??

I am a little perplexed that the price and innovation in GA avionics has changed so much over the last 20 years but we still cling to the Lycomings. They're fairly expensive compared to the rest of the aircraft components. Arguably, they are one of the most important components but we are still using what I would argue is an outdated model, only producing about 150 HP with a 6L displacement. If a Continental had developed the Thielert at the same rate and expense as Garmin has done with avionics you'd be down to almost the same price as an automotive crate engine. Certified glass panels are half the price they were 20 years ago. One quarter for the non-IFR GA stuff. No one had synthetic vision 20 years ago. Now you can buy a 10 inch screen from Garmin for $2500 USD. Is it unfair to compare the rate of development and the cost to the consumer?

i'd love to see an electric aircraft but the problems with range anxiety are amplified with an electric aircraft. I can't see someone flying up to the north to do a little back country fishing or camping and waiting all day to recharge using a solar panel. You have a hard enough time finding avgas in the north. Just try doing a two leg day with an 8 hour battery charge in the middle of the day. You won't get anywhere.

This thread got me reading a little about some of the newer options that are out there. There's a page on wikipedia about GA diesel engines. Most of them are European and most of them were derived from automotive engines in the first place. No one lists prices on their respective websites which leads me to believe they are likely just as expensive as the incumbents. Shame. I like the idea of the Diesel Subaru engines. Basically an aircraft engine to begin with and I do like my Subarus.

I think that one barrier to people buying any GA plane is the price of an engine. Talk to anyone who has ever thought about it and the first thing they'll bring up is the potential for an engine failure and the cost of replacement of said engine. It's not insurance; it's not operating cost, hanger space, avionics, annual inspections - it's engine replacement costs. I'd argue that bringing all the costs down would only allow more people to get into the GA market.
---------- ADS -----------
  

User avatar
PilotDAR
Rank 10
Rank 10
Posts: 2628
Joined: Sun Sep 30, 2012 6:46 pm
Location: Near CNJ4 Orillia, Ontario

Re: 20th Century power

#16 Post by PilotDAR » Tue Sep 11, 2018 4:20 am

Lycoming/Continental aircraft engines have poor power to weight ratios compared to other engines, mostly because they are simple, and not hard working - low compression ratios. In part, this is because of the design need for being slow turning, direct drive. Any auto engine must be gear reduced to drive the propeller, and the gearbox can be a source of problem. The Thielert diesel (based upon Mercedes Benz engine) had a 300 hour gearbox TBO, and it had to be sent to Austria for the work. I really liked the engines when I flew them, but they were high cost compared to the Lycomings, which I flew on the same model aircraft (DA-42).

Lycoming/Continental/Franklin exist at a practical low cost, as their development, and teething was funded by military application decades ago, and we continue to ride coat tails on that much larger market at the time. PMA parts manufacturers got their start filling military contract for these engines, and although that market has dried up, it positioned them well to compete. They will never reach the market size of automotive engines, and thus those very mass produced low prices, but the situation is better than it could be, if the certified engines were being developed at present day costs, for a very small civil only market.

When I embarked on the two year long quest to buy a brand new SMA diesel engine for my client, SMA were delighted to entertain the sale, wining and dining us several times in France, though they never produced an engine for sale to us. Part way through the process, my client was quoted US$105,000 for the engine, and I had to do the approval of the installation. Eventually after waiting too long for his plane to be powered, he bought a Continental 550. The SMA diesel (as any diesel) had very demanding propeller limitations for vibration. The same MT prop on the SMA is very limited as to condition, compared to much greater maintenance tolerance of the same prop on a Continental.

Similarly, the development costs of the really nice Garmin $2500 glass display is borne on the back of military and they high cost commercial development. That unit for certified application is more costly (though probably the same!).

In my opinion, the economics of civil piston aircraft operation are unlikely to see development and certification of significantly different piston engines than we know now, the market just cannot afford it, when Lycoming and Continental can be kept running forever. Thing of it this way, when Superior had a clean drawing board to build whatever engine they wanted - they copied a Lycoming!
---------- ADS -----------
  

photofly
Top Poster
Top Poster
Posts: 6579
Joined: Tue Jan 18, 2011 4:47 pm
Location: Making aviation exhausting, everywhere

Re: 20th Century power

#17 Post by photofly » Tue Sep 11, 2018 5:30 am

Aviatard wrote:
Mon Sep 10, 2018 5:23 pm
photofly wrote:
Mon Sep 10, 2018 11:35 am
They typically come with an absurdly low TBO initially, until there's a body of evidence for the regulator to approve extending them.
Hmm. TBO is a manufacturer recommendation and not a hard limitation, no? We run our engines on condition, but this might be because our MCM allows it. I’m not sure if this is allowed for non-commercial ops.
Your MCM allows it only because there already exists a huge corpus of knowledge about how safely to run a TCM or Lycoming engine past TBO, and because you as an OC holder have demonstrated experience with an inspection program that shows you can safely make use of that extra time, and are alert to signs of engine deterioration.

Any new engine design has to build the body of knowledge that would allow operators to move beyond TBO, before anyone is going to be approved to go beyond TBO. For the same reason, TBO is limited, initially.

Private owners can do what they want, but if offered an engine design where the manufacturer quotes (albeit because of regulatory restriction) 1200 hours TBO vs. a tried and tested 2400 hours TBO, which is more attractive?
PilotDAR wrote: Similarly, the development costs of the really nice Garmin $2500 glass display is borne on the back of military and they high cost commercial development. That unit for certified application is more costly (though probably the same!).
I'd argue that almost all modern electronics technology is driven off the back of the mobile phone manufacturing industry. Billions of units made and sold.
---------- ADS -----------
  
“This isn’t flying, it’s falling. With style.”

Glasnost
Rank 2
Rank 2
Posts: 64
Joined: Mon Jul 14, 2014 6:56 pm
Location: The Workers' Paradise

Re: 20th Century power

#18 Post by Glasnost » Wed Sep 19, 2018 10:18 am

Subarus don’t last because they are reliable. They last because they have high retained value because they aren’t easy to finance and are almost never leased vehicles. A blown head gasket will sent a domestic to the scrapyard while it’s almost a right of passage for a Subaru. You don’t want one of those in the air.

Put simply.. a Subaru engine is far more complex than an opposed aircraft engine and spins too fast to produce power without an RGB and isn’t designed to run at 75% power for hours on end.

You don’t have head gaskets on old aircraft engines. They are air cooled and the heads are screwed and shrunk onto the barrels.

You only have one camshaft on an old aircraft engine that’s driven by a couple of straight cut gears. That’s all you need with a 2700 RPM redline. Your Subaru has four camshafts driven by a complex and failure prone timing belt. DOHC also makes for huge heads and more frontal area.

Timing is fixed on an aircraft engine since it only has to accelerate the propeller, not the whole vehicle. Magnetos are used because they are simple and light forms of independent ignition. Electronic ignition would require two alternators and two batteries to satisfy requirements. Same with electronic fuel control which again isn’t needed because the engine spends most of its time at one speed and power setting.

Even a modern aircraft engine like a Rotax 912 has barely better power to weight than an O-200 based on the 1930s O-175. And it has five additional failure modes (two throttle cables, gear box, coolant leak, water pump, reduction gearbox, dog clutch).

No. Automotive engines weren’t designed for the same purpose as aircraft engines. Most automotive engines are in service on homebuilts which don’t face the same daily rigours as certified aircraft in commercial service.
---------- ADS -----------
  

User avatar
PilotDAR
Rank 10
Rank 10
Posts: 2628
Joined: Sun Sep 30, 2012 6:46 pm
Location: Near CNJ4 Orillia, Ontario

Re: 20th Century power

#19 Post by PilotDAR » Wed Sep 19, 2018 11:17 am

I agree with Glasnost's considered reply, other than to say that my understanding is that the Subaru engine was evolved from an aircraft engine:
Using engineering owing much to Fuji Heavy Industries' aviation background, 1965 saw the introduction of the legendary Subaru Boxer Engine – a feature that continues to define the Subaru marque.
That said, Subarus are not my first choice, and I prefer to fly behind a certified aircraft engine (preferably direct drive if piston). Auto engines for cars, aircraft engines for aircraft, as well explained, they're simply different.
---------- ADS -----------
  

lownslow
Rank 8
Rank 8
Posts: 935
Joined: Fri Mar 07, 2008 8:56 am

Re: 20th Century power

#20 Post by lownslow » Wed Sep 19, 2018 11:56 am

When choosing an engine for an airplane, the main considerations to me would be weight, heat rejection, and torsional vibration. Weight is obvious. Heat rejection is a little trickier but it's one of the reasons our air-cooled aero engines are such enormous displacements putting out so little power for their size and one big place where auto conversions fail. Torsional vibration is also a tricky subject but in a nutshell a piston engine gives power as a series of pulses which a car's entire weight damps out where only the propeller on an airplane damps that. If the designer gets it wrong it leads to premature wear and/or failure of the prop drive (whether the crankshaft itself or the reduction gearbox).

This is why the cautious folk go for the airplane engines in airplanes, because all the above has been figured out by Lycoming and Continental for decades now. Auto conversions can be done and plenty have been done, it's just a matter of doing a substantial amount of homework and still accepting what is probably a little higher risk.
---------- ADS -----------
  

Posthumane
Rank 7
Rank 7
Posts: 530
Joined: Sat May 09, 2009 6:16 pm

Re: 20th Century power

#21 Post by Posthumane » Wed Sep 19, 2018 1:32 pm

Apart from the many automotive powered homebuilt/experimental aircraft, there are also "in between" solutions for modernizing aircraft engines. Some of the major innovations in automotive engines have been the ancillaries - fuel injection and electronic ignition systems, and these can be retrofit onto existing lyc/cont engines in the non-certified domain (E-mags/P-mags, various EFI systems, etc). Mechanically, modern car engines are not that much different than older car or aircraft engines. Better flowing head designs and higher compression ratios due to better fuel/ignition controls have allowed higher power outputs from smaller displacements, but aircraft engines are typically thermally limited rather than airflow limited. You could make a high compression, high flow lycoming (like some experimental guys do) and the torque will be significantly higher than the stock model, but the heat dissipation requirements and stress on the engine will be higher which certainly increases your chance for mechanical failure.
---------- ADS -----------
  
"People who say it cannot be done should not interrupt those who are doing it." -George Bernard Shaw

Post Reply

Return to “Maintenance”